9 August 2019

To SBLA

Stefan Ott

Dear Sirs,

Upon completion of the period of the internship though IASTE at your organization I would like to submit a report that I have prepared which includes information that might be useful.

With this opportunity I would like to thank the organization for the experienced and knowledge that I have gained during this period.

Stefan Ott

Majacuaju M angemba en icrossofila ren IANA, Na Koironoinda en TETTAK.

	Sec. 16	ANOX AMAI	ETEVEE	NC S		
EAHOOH 9	8	13.1	P-EACTOR			
AP. DAKENO	10:10	ILEST A	HISEPON	e P		
TEN. AMINE		1	12 8 19	3		
ANTHE OIK, YTHE						
EM	EMPI					
Victor						
X,	4 a	<u>-</u> ^				

Water management & infrastructure in Cyprus and Limassol

Stefan Ott, BSc.

DEPARTMENT FOR Umwelt- & Energieverfahrenstechnik

About STEFAN OTT

- Stefan Ott
- From Vienna, Austria
- Bachelor of Science in Environmental Engineering/Process Technology from Montan-University of Leoben, Austria
- Summer trainee at Sewerage board of Limassol – Amathus in 2019

This is NOT a scientific presentation. Pictures in this presentation were taken by me or handed to me by SBLA-staff. Description of treatment process was mostly conducted through interviewing engineering staff of SBLA or studying the operation manual of the plant. Minor errors possible.

- mailto: ott.stefan@me.com

- phone: +43 680 2143727

Structure

- 1. Cyprus in Environmental Figures
 - Overview, demand and sources, availability, consumption
- 2. Domestic water supply of Cyprus
 - Overview sources, pipes and plants
 - Water distribution losses
- 3. Wastewater treatment in Cyprus
- 4. Wastewater treatment of Limassol
 - Sewerage System
 - Wastewater Treatment Plants
- 5. Water Reuse

Stefan Ott

3

General Information

- · Capital City: Nikosia
- EU-Member since 2004
 - €-Zone since 2008
- 1,17 million Inhabitants (2016)
- Area 9251km²
 - ~6000km² under
 Governmental control
- Since 1974: Northern part occupied by Turkey
- Climate: semi arid
 - Water poor country

Stefan Ott 4

Environmental figures

Of Cyprus

Stefan Ott

5

Area = 5,800 km² Water balance Average annual rainfall = 460 mm (1971-2000) Total annual water supply = 2,670 Mm³ 85% evapotranspiration = 2,300 Mm³ Balance "useable" = 370 Mm³ Rainfall average: Surface water 235 Groundwater 235 463mm Annual water supply 2,670 Rivers diversions = 15 Pumping -Area under Evapo transpiration (86%) 2,300 Balance "useable" 370 Aquifer recharge Stored in dams (and used) Losses to sea governmental Excess pumping = -29 Losses to sea control \sim 5800km² = $\frac{1}{2}$ recharge 5.8*109m² Total 370 Total 370 Dam Total rain quantity Surface water on area = 0.463 $m^3/m^2*6*10^9m^2=$ 2778 Mm³ Inflows Outflows • Useable rain quantity: ~10-25% (1971-2000) *Includes aquifer recharge from surface runoff 180-370 Mm³ Source: WDD 2003.

Rainfall	476 mm	= ~215 N
INFLOW (Surface storage)	82	*avg. availat
INFLOW (Groundwater)	201	= :
OUTFLOW (to the sea)	— 62	= -
Available (Groundwater)	139	
TOTAL Available (SW+ GW)	221	1
DEMAND	250	
SW Releases	60	
GW extraction (Pumping)	146	1
TOTAL Releases/ Extractions	206	
RELEASES - DEMAND	-44 (+33*+8**)	*Desalinated

Year	Water demand (MCM)	Availet	ole quantity	for the free areas of water from convisources		Enrichme water bala	ince from	Total available quantity of	Water balance (MCM)	Quantity of water given for	Area Cyprus
		Rainfall (mm)	Volume of rain (MCM)	Available quantity of water from rainfall (MCM) [Note: Around 90% of rainfall is lost due to evapotranspiration and around 0.02% from run off to the sea]	(MCM) [= available quantity of water from rainfall- Water Demand]			water (MCM) [from rainfall) + (from rainfall) + desalinized + recycled	[= Available quantity of water- water demand]	drinking (MCM)	occupied part: 6000km² (Used for calculation of rain quantity) Total area:
2010	257	429	2570	197	-60	53	12	262	5	82	9250km ²
2011	258	558	3348	265	7	49	14	328	70	81	920UKIII-
2012	259	790	4737	404	145	18	17	438	179	80	
2013	260	295	1770	117	-143	11	17	145	-115	78	DEMAND 201
2014	261	393	2358	173	-88	33	17	222	-39	80	
2015	262	484	2904	228	-34	38	17	284	23	82	264 Mm ³
2016	263	430	2580	198	-65	69	19	285	22	90	
2017	264	326	1956	136	-128	69	20	224	-40	94	Stefan Ott 11

Domestic water supply of Cyprus

Overview

Stefan Ott 15

15

Domestic water supply is based on the following sources

- Water from dams
 - Treated in Water Treatment Plants
- Water from Desalination plants
 - 4 Desalination plants in operation (only for domestic use)
- Groundwater from Aquifers
 - Decreasing over the last years due to overexploitation
- In extreme drought-situations: Water shipments

Stefan Ott 16

ABLE 1.2. Key Characteristics of the Water	Boards in Limassol, I	arnaca, and Nicosia,	2013	
Description	Unit	Water Board of Limassol	Water Board of Larnaca	Water Board of Nicosia
Population		170,000	60,000	210,000
Connections (water meters/customers)	No.	98,000	33,400	120,000
Average potable water tariff	Euro/m³	1.00	1.70	1.30
NRW	Percent	28.3	17.0	16.5
Total staff	No.	110	50	140
Staff/1,000 connections	No.	1.12	1.50	1.16
Per capita dotation (supplied into the system)	l/c/d	256	215	222
Per capita consumption	l/c/d	184	178	178
Per capita domestic consumption *	l/c/d	145	125	140
Total volume billed	Mm³	11.4	3.8	13.7
Total sales	Million Euros	18.3	6.6	22.9

Dams to retain water for drinking and irrigation purposes

a. Asprokremmos Dam

- Relying on sufficient precipitation to fill the dams every year during winter (almost no rainfall in summer)
- · Strong dependency on rainfall water shortage in case of drought
- Focus on desalination of seawater to reduce risks in water supply

Stefan Ott

19

All water Dams in Cyprus ■ Dams used for domestic potable water

TABLE 2.1. Potable Water Dams in Cyprus and Connections to the Southern Conveyor

Dam	Location of the dam (district)	First year of operation	Capacity (Mm³)	Connected to Southern Conveyo
Kannaviou	Paphos	2005	17.2	No
Evretou	Paphos	1986	24.0	No
Asprokremmos	Paphos	1982	52.4	No
Arminou ^a	Paphos	1998	4.3	Yes
Kouris	Limassol	1988	115.0	Yes
Germasogeia	Limassol	1968	13.5	Yes
Kalavasos	Larnaca	1985	17.1	Yes
Lefkara	Larnaca	1973	13.9	Yes
Dhipotamos	Larnaca	1985	15.5	Yes
Tamassos	Nicosia	2002	2.8	No
Klirou-Malounta	Nicosia	2007	2.0	No
Total water storage	capacity		253.7 Mm ³	179.3 Mm³

Dam	Capacity (MCM)
Kouris	115.0
Asprokremnos	52.4
Evretou	24.0
Kalavasos	17.1
Dhypotamos	15.5
Lefkara	13.9
Yermasoyia	13.5
Ahna	6.8
Arminou	4.3
Polemidhia	3.4
Mavrokolymbos	2.2
Vyzakia	1.7
Xyliatos	1.4
Argaka	1.0
Pomos	0.9
Kalopanayiotis	0.4
Agia Marina	0.3
Total	273.6

Nonrevenue water - Losses in distribution

TABLE 2.7. Nonrevenue Water for the Water Services Providers as a Percentage of System Input Volume, 2013

M.A	System input volume	Nonrevenue water (NRW)			
Water service provider	Mm³	Mm³	Percent	liter/con./day	ILI
Water Board of Nicosia	17.0	3.4	20	120	2.6
Water Board of Limassol	16.0	4.5	28	174	3.5
Water Board of Larnaca	4.4	0.8	18	66	1.3
Municipal water departments	18.3	6.4	35	-	-
Community boards	21.5	8.6	40	-	_
Overall NRW	77.2	23.7	31	_	_

Note: — = not available; ILI = Infrastructure Leakage Index; Mm³ = million cubic meters; NRW = nonrevenue water.

- Average loss in grid: 31%, 23,7Mm³
- Weak performance of Limassol with 28% losses

Stefan Ott 2

23

Wastewater Treatment (General)

in Cyprus

Stefan Ott 25

25

Main Sewerage boards in CY

TABLE 2.13. Main Characteristics of the Five Urban Sewerage Boards, 2015

Zur Seite 8				Sewerage board		
Description	Unit	Limassol	Larnaca	Nicosia (Republic only)	Paphos	Ayia Napa, Paralimni
Population covered ('000) (current/target)	Number	130/170	40/60	255/270	105/150	115/115
Service coverage	Percent of total population	76	60	94	70	100
Treated effluent volume (current/target)	Mm³/year	7.8/19.0	2.5/6.5	12/13	3.8/5.0	3.3
Length of sewerage pipes (current/target)	km	600/650	142/325	1,430/1,440	370/400	260

Note: km = kilometers; Mm³ = million cubic meters.

Stefan Ott 26

WWTP	Area/city(ies) served	Capacity m³/day	Agglomeration served PE	Year of operation	Contract type	O&M years	Name of private contractor	
Anthoupoli	Anthoupoli	13.000	50.000	2008	DBO	10	WWT, Germany	
Mia Milia	Part of Nicosia	30.000	110.000	2013	DBO	10	WWT, Germany	
Vathia Gonia	Nicosia city	22.000	75.000	2010	DBO	10	lacovou, Cyprus Saur, France Stereau, France	in C)
Vathia Gonia – Septage and industrial waste	Nicosia Larnaca	2.200	-	Feb 1998	DBO	98°-03 03-08 08-13**	Biwater, UK Lacovou/Saur/Stereau	WWTP
Limassol	Limassol city and environs	20.000 40.000	230.000	1995*	DBO	5+5	*Kruger, Denmark Zachariades, Cyprus Kruger, Denmark Cybarco, Cyprus	large l
Larnaca	Lamaca city and touristic strip to the east	8.000 18.000	80.000	1995 2015	Utility run	-	_	9
Paphos	Paphos and Geroskipos towns	19.500	100.000	2008	DBO	10	Envitec, Greece	Existin
Ayia Napa Paralimni	Ayia Napa and Paralimni towns	21.000	91.000	2006	DBO	5	Michaniki Perivallontos, Greece	EX.

Wastewater Treatment (Limassol)

- 1. Sewerage system of Limassol
- 2. Waste Water Treatment Plants of Limassol

Stefan Ott 31

31

1. Sewerage and drainage system

Of Limassol

Stefan Ott 33

33

Collection of wastewater in Limassol

- Limassol has a separated sewerage system
 - Domestic waste water → Treatment plant
 - Drainage system for rain and superficial water
- Construction: Phase 1 began in May 1992
- Approx. 90% of system is gravity forced, 10% pressure pipes

Generators at every pumping station for independent power supply and guaranteed function of sewerage system

The state of the state of

2. Waste Water Treatment Plants

Of Limassol

Stefan Ott 40

Design data d	of WWTP	Moni
---------------	---------	------

Total population ~ PE		272,000	
Sewage flow			
Mean flow rate, q _{mean}	m³/d	40,000	
Peak flow rate, p _{max}	m³/h	3,580	
Load			
Specific BOD ₅	g/PE	60	
Daily BOD₅ load	kg/d	16,320	
Daily COD load	kg/d	31,920	
Daily SS	kg/d	21,600	
Daily nitrogen load	kg/d	2,200	
Daily phosphorus load	kg/d	560	
Temperature, sewage, min	°C	20	
Temperature, sewage, max.	°C	32 Ste	tefan

Primary Treatment

Screening, Fat&Grit removal, Fine screening

Stefan Ott 44

Ott 43

1.2 Fat and grit removal

Fat

- Brought to surface by aeration with bubbles
- Removed from surface with skimmer
- Stored in 12m² fat-tank

Grit

- Removed through sedimentation
- Collected through a collection unit on the bottom

Stefan Ott 47

47

Fat and grease tank Outlet to fine screening Skimming chamber chamber Chamber Og supply Inflow and bubble aeration Stefan Off 48

1.4 Primary settling in Primary Clarifiers - empty

53

1.4 Primary Sludge → Digestors

Stefan Ott 5

54

Secondary Treatment

Aeration (BOD-Reduction, Nitrification, Denitrification), Secondary Settlement, Sludge-Return

Siefan Ott 55

55

Water conditions and types of bacteria

- **Anoxic** no dissolved, no molecular oxygen present (f.e. only NH_4^+)
- **Aerobic** dissolved oxygen (O_2) and molecular O present or produced (f.e. $NH_4^+ \rightarrow NO_3^-$)
- **Anaerobic** no dissolved O_2 but molecular O present (f.e. NO_3 -)
- · Important types of bacteria:
 - Heterotrophic organic matter as carbon source (Denitrifiers)
 - Autotrophic CO₂ as carbon source (Nitrifiers)

Stefan Ott 57

57

2 Biological Treatment – Aeration Tanks

- After mechanical treatment
- Important dissolved contaminants in waste water
 - COD
 - BOD
 - Suspended solids
 - NH₄-N
 - Tot-N
 - Tot-P

- BOD is reduced during aerobic phase through microorganisms
- Suspended solids settle through flocculation
- NH₄-N and tot-N, tot-P decrease in Nitrification/Denitrification
- Contaminants are not totally removed but reduced to meet effluent criteria

Stefan Ott 59

59

2 Process in Aeration Tanks – Nitrogen Removal

Nitrification (N)

$$2NH_4^+ + 3O_2 \longrightarrow 2NO_2^- + 2H_2^- O + 4H^+ 2NO_2^- + O_2 \longrightarrow 2NO_3^-$$

$$2NH_4^+ + 4O_2 \longrightarrow 2NO_3^- + 2H_2O + 4H^+$$

- Aerobic, autotrophic, mesophilic bacteria
 - CO₂ is carbon source
 - Dissolved oxygen necessary
- Resulting acidic conditions
- Aerated conditions

Denitrification (DN)

$$NO_3^- \to NO_2^- \to NO \to N_2O \to N_2$$

$$4\mathrm{NO_3^*} + 5\mathrm{C} + 4\mathrm{H_2CO_3} \rightarrow 2\mathrm{N_2} + 5\mathrm{CO_2} + 2\mathrm{H_2O} + 4\mathrm{HCO_3^*}$$

- Anaerobic, mostly heterotrophic, mesophilic bacteria
 - MO need certain BOD (C) for DN
- Use of NO_3^- as oxygen source and reduction to N_2 (g)
 - NO dissolved Oxygen necessary
- Resulting in alkaline conditions
- No aeration Anoxic conditions

2 Process in Aeration Tanks - "BIO-DENITRO" Process

Figure 1.5.4 10-phase operation cycle for the BIO-DENITRO process.

Example from structure 28

- Slightly different processes in the 2 separated aeration tanks (08, 28)
- Hydraulic retention time in aeration basin depends on the flow (HRT = V_{AT}/Q_{in})
 - With normal inflow ~8h in AT
- Normally only the phases B and C are operated
 - Depends on inflow BOD loading, general inflow volume
- Operation phase changes multiple times during hydraulic retention
- Mixers keep water moving in DN

Stefan Ott 6

61

2 Biological Treatment - Aerations tanks

Tertiary Treatment

Sand filters, chlorination

Stefan Ott 67

67

3.1 Sand filters

3.1 Sand filter underground pipes and backwash pumps White the pumps of the pumps

3.2 Effluent from sand filter to chlorine contact chamber

71

Electrolytic chlorination on site (NaCl → Cl-)

Salt saturation tank

Electrolyser to produce Cl

Design effluent data WWTP Moni

	Effluent to sensi-	Reuse for irrigation
	tive areas	
BOD₅ average/day	10 mg/l	10 mg/l
COD average/day	70 mg/l	70 mg/l
Suspended solids average/day	10 mg/l	10 mg/l
NH₄-N average/day	2 mg/l	2 mg/l
N-total average/day	< 10 mg/l	< 15 mg/l
P-total average/day	< 2 mg/l	< 10 mg/l

Stefan Ott 73

73

Sludge treatment

Thickeners, Dewatering, Digestors,

Stefon Off 74

Sludge handling in plant

- Primary sludge goes directly to digestors
- Secondary sludge goes through thickener to digestor
- Alternating decanters are used to dewater the digestors output
- Produce biogas is burnt in on site engine with generator
- On site gas storage as shown on picture

Stefan Ott 7.

75

Dewatering of sludge in decanter – products NOTE 76

Dewatered sludge is dried in the sun and loaded to trucks

77

Operation of WWTP

Mass balance, Effluent, Experience

Stefan Ott 78

Operation Experience of WWTP Moni - Problems

- Toxic substances
 - Recovery time depends on capacity of the plant
 - Wine festival causes problems in nitrification – NH₄⁺ doesn't get reduced to NO₃⁻ → exceeding design effluent values
- Operator has important role operation and problemsolving

Light overflow of non settled secondary sludge mostly due to high inflow

tolon Ott 8

81

Operation Experience of WWTP Moni

 Foaming due to excessive use of NitroCal Ca(NO₃)₂ for odour removal → reduced quantity of NitroCal

82

Water Reuse

of Limassol's treated waste water

Stefan Ott 83

83

Water management & infrastructure in Cyprus and Limassol

Stefan Ott, BSc.

DEPARTMENT FOR

Umwelt- & Energieverfahrenstechnik

85

Literature

- Cyprus Experiences with Desalination and Non-Revenue-Water Reduction, Marseille CMI, December 2016
- Securing potable water supply under extreme scarcity, World Bank Group, June 2018
- Management of water resources in Cyprus, C. Demetriou, 2012
- Cyprus Experiences with Desalination and Water-ReUse, IDA World Congress 2017
- Cyprus Experience with Urban Waste Water Directive (91/271/EEC), Water Security in Bulgaria 2017
- Water pricing policies in Cyprus, Workshop, A. Hadjipanteli (WDD), April 2018
- http://www.moa.gov.cy/moa/wdd/WDD.nsf/page51_en/page51_en?opendocument
- https://en.wikipedia.org/wiki/Cyprus
- http://www.moa.gov.cy/moa/wdd/WDD.nsf/page08 en/page08 en?opendocument
- http://www.moi.gov.cy/moi/moi.nsf/index en/index en?OpenDocument
- http://www.sbla.com.cy/en/

Stefan Ott 8

